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Propagator representation of anomalous diffusion: The orientational structure factor formalism
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The radial Fourier transform for the isotropic space with a fractal dimension is discussed. The moments of
diffusive displacements with non-Gaussian propagators arising as solutions of fractional diffusion equations
are calculated. The Fourier propagator is applied to NMR correlation and spectral density functions in context
with the orientational structure factor formalism. It is shown that the low-frequency molecular fluctuations of
liquids in porous media with strong or forced adsorption at surfaces are due to reorientations mediated by
translational displacements caused by surface diffusion of the adsorbate molecules. In terms of this formalism,
field-cycling NMR experiments provide information on the static and dynamic fractal dimensions related to
surface diffusion. The experimental results for liquids in porous silica glass can be explained by a surface
fractal dimensiord;= 2.5, where the mean squared displacement scaleg@3)ot%% with d,,= 1 (ballistic
transpory, if the surface population can exchange with the bulklike phase in the pores, and with, if the
bulklike phase is frozen. The former dynamics is interpreted in terms of bulk-mediated surface diffusion.
[S1063-651%9908807-9

PACS numbes): 05.40—a, 61.43.Hv, 68.35.Ct, 68.35.Fx

I. INTRODUCTION (iv) d,=1 indicates ballistic transport. In this case, the
fractional diffusion equation adopts the form of a wave equa-
The anomalous transport in disordered media can be digion.
cussed either in terms of a random watk statistical ap- In the present study, the reciprocal-space solutions for
proach or on the basis of a fractional diffusion equationdisplacement distributions are employed in the frame of the
(FDE). Fractional or enhanced diffusion is characterized byorientational structure factor formalisf#,8] in order to cal-
the mean squared displacement law culate the NMR correlation and intensity functions and the
frequency dependence of the spin-lattice relaxation rate for
molecular dynamics dominated by reorientation mediated by
(r2(t))oct?dw, (1)  translational displacementRMTD) along surface§9]. The
static and dynamic fractal dimensiornd, and d,,, respec-
tively, which are related to diffusion of strongly adsorbed
where the dynamic parametdy, (usually called the anoma- molecules along fractal surfaces of porous glass, are evalu-
lous diffusion exponentof the correspondinganomalous  ated. The experimental data provide evidence for superdiffu-
random process deviates from Einstein's classical rekjlt sjve surface displacements with,=1 if the surfacelike and
=2. Non-Gaussian propagators arise as the solutions of fragulklike phase are in fast exchange. This result is consistent
tional diffusion equations, which are mostly discussed forwith the model of bulk-mediated surface diffusion developed
dy,>2 (see Refs[1-3]). However, it can be show-6] by Bychuk and O’'Shaughnes$#0]. That is, on the time
that this type of equation can be solved for the superdiffusivescale of the so-called retention time, surface diffusion takes

regime I=d, <2 as well. place in the form of Ley walks.
With respect to the exponemt,, anomalous diffusion

can be classifie{b,6] as follows. _ _ _ Il. ANOMALOUS DIFFUSION: A FRACTIONAL

(i) d,=2 corresponds to the classical Brownian motion CALCULUS APPROACH
described by a Gaussian propagator. From the statistical
point of view, this random process is characterized by fixed Fick’s second diffusion law reads
step length and waiting timfd].

(i) d,,>2 corresponds to the dispersive diffusion regime
described by a non-Gaussian displacement probability den-
sity. In the frame of the continuous time random walk
(CTRW) model, processes of this kind are due to temporalwhere\ is equal to the diffusion coefficient, arid is the
disorder, characterized by power-law distributions of thenabla operatorP(r,t) is the probability density of diffusive
waiting times[1]. displacements in a timet (the propagator The well-known

(iii) 1<d,<2 defines the intermediate region of super-solution of Eq.(2) is the Gaussian probability density.
diffusion. Enhanced transport of this sort results from long- Anomalous diffusion processes on fractal structures can
tailed step-length and waiting-time distributioti®., spatial  be treated using the fractional diffusion equatfdn6]. The
or/and temporal disorder of the random progess integral representation of the FDE reads

J —\V2
EP(r,t)—)\ P(r,t), (2
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P(r,t)—P(r,0)= ftA(t—t’)VzP(r,t’)dt’. ®)
0

The memory kernel (t—t") reflects temporal disorder of an
anomalous transport process. Assumimgt—t')=N\ (t
—t")A"YTI'(B), one getd4,6]
P(r,t)—P(r,0)=\ oD; PV2P(r,1), (4)
WhereOD{B is the Riemann-Liouville integral operatfot1].
The units of the transport constantare related to that of the
ordinary diffusion coefficientDy: [N]=[Dy/7#"1]. The
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Occasionally, the operatat® is discussed in the literature
[6,12] instead ofV2. The FDE is then certainly treatable in
one dimension, and leads to solutions in the form ofye
distributiong 6]. However, the interpretation of the fractional
spatial derivative in more dimensions remains unclear,
whereas the use of the operafdf in Egs. (4) or (5) is
motivated by the radial symmetry of tlffeacta) space under
consideration: In the reciprocal space, E¢®. or (5) are
converted into

d
Pk =—AK%D Ip(k,D)]. ®)

differential form of this equation can be expressed by the

following time-fractional diffusion equation

9P 9B )
—P(r,t)——P(r,0)=\V-P(r,t). (5)
atP ( atP (

Note that the important term af/9t?)P(r,0)
=P(r,0)t A/T(1— B), accounting for the initial-value con-
dition P(r,0)= &(r), is often not mentioned explicitly in the
literature[3,5,12,13. Actually, this term can be omitted only
in the caseBe N, but is essential if the diffusion equation
really has a fractional character. Obviously, 6e=1, we

The square of the wave numb&f=|k|?, is equal to the sum
of the d components ok if the space in which the random
motion takes place is defined lyEuclidean dimensions. On
the other hand, if the random-walk space is of a fractal di-
mensionality, the number of tHecomponents is defined by
the global dimensioD (e.g.,D=2 for a fractal surfaceD
=3 for a fractal volumg

Schneider and Wydgl] solved Eq(5) after rescaling it so
that\ = 1. However, the parametaris important for experi-
ments since it is related to the diffusion coeffici&y, and,
as a consequence, to the temperature dependence of the dif-

have @/4t)P(r,0)=0, and hence the conventional diffusion fusion process.

equation, Eq. (2), is recovered. If B=2, i.e,
(6%/9t?)P(r,0)=0, Eq. (5) takes the form of a wave equa-
tion and describes the ballistic transport regime.

The geometry of the fractal structure and the dynamics of
the corresponding random process are described by the static
fractal dimensiond; and by the dynamic fractal dimension

d, (i.e., the anomalous diffusion expongntespectively.

The solution[4] of Eqg. (6) is given by the Mittag-Leffler
function

o0

—\tPk?)]
p(k,H)=Eg[ (—AtPk®)]= > ( )

<o I'[1+8j1’ )

whereB=2/d,, can be found with the approach suggested by

Note thatV in the FDE Eq.5) represents the nabla operator Metzler and Nonnenmachgs]. The inverseD-dimensional

in D dimensiond 3,5]. The order of the fractal time deriva-
tive, B, is related tadl,, by 8=2/d,, and is independent of the
static parameted; .

P(r,t):2*1*D W*D/Zt*D/dW)\*Dlszig

Note that the space dimensi@h does not enter in the ex-
pression forp(k,t) [Eqg. (7)], in contrast to the real-space
propagatofEg. (8)]. Thus, in this modelp(k,t) exclusively
provides the dynamical information indicated dy, regard-
less of the structure of thespace. Fob =2, Eq.(8) repre-
sents our surface propagator.

The mth moment of the propagator at E@®) reads(see
Appendix

T[(2+m)/2]T[(m+D)/2]
T[(2+D)/2]T[1+m/d,]

m/d,,

©)

<rm(t)>:2mle)\m/2

so that the second moment takes the form

Fourier transformatiorisee Appendix of the characteristic
function given in Eq(7) leads to the real-space propagator in
terms of Fox’sH function[14],

D 1
: v sl o
>ntY | ([ 1] [2-D 1
PRI
[
2D\
(r3t)= mtzm- (10)

In the limit \t?wk?<1, the propagator given in Eg7)
approaches

)\t2/dwk2

- r[1+2/dw])' (19

p(k,t)=ex;{

With this expression, one finds
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T[(m+D)/2] tm/dy, cycling NMR relaxometry[9]. The information probed in
(rM(t)y=2m"1D\™?2 a this way refers to the autocorrelation function via the inten-
I'L(2+D)2] T[1+2/d,)]™ sity function.
(12 The correlation functiorG(t) virtually reflects the corre-

lation of molecular orientations at the momentsand t’

+t. Molecular reorientations in bulk liquids are a conse-

quence of rotational diffusion. If the molecule is adsorbed on
(r2(t))= £21dy (13) a surface, this rotational diffusion is hindered and incomplete

rri1+2Md,] with respect to the solid angle range covered. That is, re-

sidual orientational correlations persist on a time scale much
for the second moment. Comparing E¢s0) and (13), one  longer than that of ordinary rotational diffusion. The mecha-
realizes that the asymptotic form of the Mittag-Leffler propa-nism coming at longer times into play is “reorientation me-
gator given in Eq.(11) can be used to calculate the meandiated by translational displacements” along rough surfaces.
squared displacement instead of the exact solution a{/tq. The formalism is described in more detail in Refs.
This finding is of relevance for practical applications since[7-9,15,16,18 Thus, on a correspondingly long time scale,
the asymptotic form op(k,t) is more obvious than the exact nuclear spin-lattice relaxation is dominated by surface diffu-
Mittag-Leffler representation of the propagator. sion.

In Ref.[6], an alternative approach to superdiffusion was Displacements of the adsorbed molecule along the surface
considered for the fractional diffusion equation in one di-are characterized by the propagaR{s,t) on the one hand,
mension. In that case, thespace solution turns out to be and the orientational correlation at sites separated by the dis-
equal to the characteristic Kohlrausch-Williams-Watts func-tances on the other. The latter is described by the surface
tion, orientation correlation functiog(s) which can be expressed

in terms of second-order spherical harmonygs_, (£2),

in general, and

p(k,t)=exp —at|k|*), 0<a<2 (14

9(8)=4m(Y2-1(Q0) Y2+1(Qe)) s 0,0,
where @>0,t>0). By means ofp(k,t) given in Eq.(14),

Lévy distributionsp(r,t) in the real space can be generated _ 47Tf 2 J f
with the aid of the inverse Fourier transfof@]. For larger, A 0 | d€o | dQs Y2 -1(Lo)
P at1 .
one obtaing(r,t)o«t/r as the limiting form of the Ley XY 1(Q)B(Q,04,9). (17)

a-stable process in a one-dimensional space.

The quantityA is the surface area accessible by surface

IIl. THE RMTD RELAXATION MECHANISM diffusion on a time scale of the ord&j. The vectors}, and
AND THE ORIENTATIONAL Q. denote the surface orientations at the initial and final
STRUCTURE FACTOR positions on the surface, andsy+ s, respectively. The func-

Proton spin-lattice relaxation in liquids is predominantly ion ®(£2o,42s,5)dQd€s is the conditional probability
due to fluctuations of the intramolecular dipole-dipole inter-that the surface orientation at the posit®is within O and
action among the spin-bearing nuclei. That is, molecular dy€2std€s if the surface orientation at the positics is
namics reorients the molecules so that dipolar coupling iVithin o and Qo+d€,. Expressingd(£,,€s,5) by the
modulated. In context with adsorbate diffusion along roughPreduct ofé functions averaged over all possible initial po-
surfaces, fluctuations slow compared with bulk correlatiorSitions, ® (€2, €2s,5)=(5(€2(so) — €20) 6(€2(sp +5) — L)),
times are governed by reorientations mediated by transldeads to
tional displacements along rough and curved surfa8d5—

18]. 9(9)=4m(Y2-1(%)) Y2+ 1(2(5+9))s- (18

Molecular fluctuations are described by the autocorrela-
tion function G(t), and, in the frequency domain, by the  pangom surfaces may be discussed by considering a one-
|nten_3|ty functionZ(w). The latter is defined as the cosine yimensional surface profil§18]. Furthermore, it can be
Fourier tranform ofG(t), shown that the surface correlation function given above in

terms of second-order spherical harmonics essentially decays

P the same way as the correlation function of the normal vec-
He) 2f0 G(hcoget)dt A9 tors,g(x)~(n(Xe) - N(Xo+X) )x,- On the basis of fractal scal-
ing relations, the proportionalitg(x)<x"~! can be ob-
The spin-lattice relaxation rate is given by tained, whereH is the roughness exponent of the surface
profile related to the surface fractal dimension Hy=3
1 [m)*8 452 )2 —ds.
T, \4m) 27 L+ D(FIP)[Z(0) +4Z(2w)]. On these grounds and assuming radial symmetry, we sug-

(16) gest that for fractal surfaces characterized by the fractal di-
mensiond;, the surface correlation function scales as
A technique suitable to record the frequency dependence
of this function over several orders of magnitude is field- g(s)ocs?™ 9, (29
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where s is the curvilinear displacement within the two-  On the other hand, in context with g walks and a
dimensional2D) space of the second-order base plane relafractal-space diffusion equation, one gets
tive to which the surface roughness is considered. Equation
(19 is valid in the scale-invariance rangg<s<&;, where G(t)oc t~(drm2)le, (24)
&, is of the order of the molecular diameter, afidis of the
order of the mean pore size.

For the analysis in the following, we recall thgfs) re-
flects the geometry of the surface, wher@qs,t) accounts
for the dynamics on the surface. That is, we have toDset

=2 in Eq.(8). The same applies to the correlation function . . e
G(1), wh?ch is calculated ir?E[)he base-plane space of the gicorresponds tal,, in the context of the fractional diffusion

mensionD =2. In the isotropic caseG(t) can be expressed theory. This conclusion thus elucidates the nature of a very
by [8] fundamental parameter.

The counterpart of the correlation functi@(t) is the
intensity function. In the present context, it reads

This suggests that has the character of a fractal dimension
as already pointed out by Klaftest al. [1] for the same
parameter in Eq(14). ComparingG(t) calculated in terms
of the time-fractal and space-fractal FDE, E(&3) and(24),
respectively, indicates indeed that the exponennt Eq. (14)

G(t)zf:g(s)P(s,t)Zwsds (20 T(w)o o~ 2 S (25)
w)Xw w w

This is the real-space variant. In the reciprocal space, thaccording to Eq(15).
correlation function reads In the case of normal two-dimensional diffusion, i.@,,
=a=2, the RMTD correlation and intensity functions scale

P as
G(t)= f S(k)p(k,t)dk, (21

(2m)?Jo G(t)xt~ @22 (¢,>2) (26)
where the orientational structure fac®(k) is introduced as and

a counterpart to the surface correlation functoy(s). The

two functions are related by the spatial Hankel transform T(w)oc o 479072 (2=<d;=<3), (27)

o respectively. Normal 2D diffusion is expected, for example,
S(k)Z(ZW)Zkf sg(s)Jo(ks)ds, (22 in the thin interfacial liquid layer arising between the matrix

0 and the frozen bulklike adsorbate at temperatures below the
freezing point. In that case, bulk-mediated surface diffusion
is prevented, and we are dealing with ordinary diffusion in a
fwo-dimensional system.

On the other hand, at temperatures above the freezing
point and under strong-adsorption conditions, the adsorbate
molecules perform random walks along the surface as a con-

equence of intermittent excursions into the bulklike phase.

f NMR reflect ientational rather th terial densit tSurface diffusion on this basis was shown to be anomalous
0 : reflects orientational rather than matenal Censity, inin the so-called retention timesee Refs[10,19). The
correlations[18]. For fractal surfaces3(k) is a power law

S(K) k3. leading to power-law decays 6(t) andZ(«w). character of surface diffusion then turns out to be of the

Equation(21) stipulates the availability op(k,t) in the it;alglsstl(;: E/npoev’w'{egngé v-\ll-zgllf S‘?;J[eofzg?rr‘ei?o?n?jliiga;?\/lnjl'eDn t
whole wave number range. However, the orientational StrUCq ctions are
ture factor is a power law only in the scale-invariance range
of the surface. Therefore, the decays of the correlation and G(t)xt @2 (2<d,<3) (28)
intensity functions calculated below apply in correspond-
ingly limited time and frequency ranges, respectively. Thisand

should be kept in mind when contemplating the examples in

with Jo(ks) the Bessel function of zeroth order. The Hankel
transform is a special case of the radial Fourier transform fo
an isotropic space with two dimensiosee, also, Appen-
dix).

Actually, S(k) in the RMTD model is analogous to the
static structure factor used in scattering theories. The onl

the following. I(w)xw G749 (2=<d;<3). (29
The correlation functiorG(t) can be calculated for the

RMTD mechanism with the help of E@20) using the exact IV. COMPARISON WITH EXPERIMENTAL DATA

representation of a real-space propagator(8qAlternately, AND DISCUSSION

the calculation can be performed in thkespace[Eqg. (21)]

using the asymptotik-space distribution given by Eq11). The RMTD low-frequency spin-lattice relaxation mecha-

Thus, in terms of the fractional-time diffusion equation ap-nism links dynamic properties of adsorbate molecules with

proach, one finds the structural details of the adsorbent surface, characterized

by the dynamic fractal parametdy, of the random process

G(t)oc t~(di=2)/dw, (23)  and, for fractal surfaces, by the static fractal dimensipof

the surface, respectively. According to EB5), these param-
provided that the displacements along the surface corresporaders can be evaluated from the power-law low-frequéhcy
to the scale-invariance length scale of the surface. dispersion curves, which were observed for polar liquids in
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FIG. 1. Frequency dependence of the proton spin-lattice relax- FIG. 2. Frequency dependence of the proton spin-lattice relax-
ation time of dimethylsulfoxidéDMSO) in porous glass B10 above ation time of malononitrile in porous glass B10 above and below
and below the freezing temperature of the bulklike liquid. Data forthe freezing temperature of the bulklike liquid. The relaxation times
an isotopically diluted samplé80% DMSO-¢) are also shown. of the partially frozen sample at 275 K refer to the slowly decaying
The relaxation times of the partially frozen sample at 270 K refer tocomponent of the NMR signal corresponding to the nonfreezing
the slowly decaying component of the NMR signal correspondingsurface layers.
to the nonfreezing surface layers.

T,oc 973004 for T=270 K, d,=2 (30)

porous glassegl6], for instance. q

A clear example for a power-law frequency dependencé"’ln
of the spin-lattice relaxation timé&, is shown in Fig. 1. It T. o 054+0.04
refers to the system dimethylsulfoxid®MSO) filled into !

porous silica glass with a mean pore dimension of 10 NMgte that similarT, dispersion slopes have also been ob-
Experimental details can be found in RE3). Figure 1 also  geryed[16] with several other polar organic liquids in a po-
shows the protorT; dispersion measured in the adsorbatergys glass with 30 nm pores. This indicates that the surface
diluted by its deuterated form so that any intermolecular di-strycture acts on all adsorbate liquids the same way.

polar interactions are reduced. The coincidence of the two Ag another example, Fig. 2 shows malononitrile in the
data sets proves that the spin interactions dominating thgame nanoporous glass at 275(& K below the melting
low-frequency spin-lattice relaxation in DMSO are of an in- region of the bulklike liquid in the por¢gnd at 291 K(18 K
tramolecular nature. above the freezing pointrespectively. The power-law fre-

Two different temperatures have been examined. At 27Quency dispersions of the spin-lattice relaxation time are
K the bulklike adsorbate in the pores is frozen and does nodygjuated as

perceptibly contribute to the spin-lattice relaxation rate. The
observedT, dispersion is rather caused by the nonfreezing T,oc 074004 for  T=275 K, d,=2 (32
interfacial liquid existing in the form of a one to two mo-
lecular diameter thick nonfreezing surface layer. In such and
situation, one expects that diffusion along the surface is nor-
mal, that is,d,,= 2. T,0495004 for T=291 K, d,=1. (33

On the other hand, at 291 K when all adsorbate molecules
are in the liquid state, the bulklike adsorbate phase contribmterpreting these power laws according to E2p) and the
utes, and the “bulk-mediated surface diffusion” mechanismpropagator Eq(8) suggests a common orientational structure
can occurf10]. As already outlined above, the consequencefactor of this particular porous glass independent of the ad-
is that in the strong-adsorption limiivhich is pertinent hepe  sorbate species. The result is
and for surface displacements short relative to diffusion in
the bulk the dynamic parametdy, =1 applies for the propa- S(k)ock 055004 (34)
gation of adsorbate molecules along the surface.

At both temperatures a power-law behavior is observed’he surface fractal dimension to be inferred from this is
over three to four decades of the frequency wqy /27 (wq
is the Larmor frequendy The results are d;=2.5+0.04. (35

for T=291 K, d,=1. (31
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This value very favorably fits to the range of typical litera- =2 for a rough surface with the surface fractal dimension
ture data evaluated for controlled porous glass on the basis D=3, andn=3 for a fractal pore space with th&ol-
x-ray and neutron scattering experimef2§]. ume fractal dimension 2 D=<3. The number of angle vari-
In this work, we have described fractional dynamics inables depends on the global dimensiorin two global di-
fractal spaces in a comprehensive way. The two sources ofiensiongon the fractal surfageonly one angle variable is
anomalous scaling laws are clearly distinguished in the fornecessary. In three dimensiofis the fractal volumg polar
malism presented. It was shown that fractional scaling lawsand azimuthal anglesg(and ¢, respectively are needed. In
in space and time can be identified experimentally usinghe latter casef3"de=2 as a consequence of the radial
field-cycling NMR relaxometry. Furthermore, it was eluci- symmetry assumed above. One can choose the coordinate
dated that the physical meaning of the exponenfsee Eq. system so that the angleé betweenr and k in Eq. (Al)
(14] andd,, [see Eq.(1)] coincides so that the formalism coincides with the polar angle of the system. Hence if

can consistently be expressed in a closed form. €[0,7], the volume elements fd>=2 and 3 read
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APPENDIX: THE FOURIER TRANSFORM X (kr)t~P23p, y(kr),  (AB)
IN THE FRACTAL SPACE _ _ , o
WITH RADIAL SYMMETRY the radial part of the Fourier transform in the statistically

isotropic fractal space takes the form
The radial part of the Fourier transform in the isotropical

D-dimensional fractal space reads *
P p(k,t)=(2m) P07 fo r223p5-1(kN)P(r tydr.

p(k,t)=J P(r,t)e kreosfgbr, (A1) (A7)

Schneider and Wysft] pointed out that the radial Fourier

wherer =|r|, k=|k|, and the angle is spanned by andk.  2nsform of this type applies tD=ne{1,2,3.. As shown

Furthermore, above, Eq(A7) is valid for any space with the static fractal
dPr =dQr® idr (A2) dimensionD e R, D>1. Note that the Fourier transform
’ given in Eq.(A7) is self-inverse. The real-space propagator
2 P2 P(r,t) can be calculated from(k,t) as the inverse Fourier
J;] QDZW. (AS) transform

This result can be obtained for radial symmetry with the  p(r t)=(27) P21~ DlzkaD/Z‘]D/Z—l(kr)p(kat)dk-
ansatz
(A8)
270-D2
dQp=vr=—5:(sind)P72d6, D>1 (A4)  Using Eqs.(A2) and (A4), the mth moment ofr is found to
I'[(D—-1)/2] be

for 6e[0,7]. Experimentally, only the range<dD=<3 is
relevant, so that we can restrict ourselves to this case. The (rm(t)) =
fractal space with the non-Euclidedfiacta) dimensionD
has a global dimension, defined by the number of the in-
dependent variables describing the behavior of self-affinéEquation(9) is reproduced by inserting the propagator Eq.
functions in the space under consideration. For instance, (8) in Eq. (A9).

D/2

F[D/2]

j P=1rmp(r t)dr. (A9)
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