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Propagator representation of anomalous diffusion: The orientational structure factor formalism
in NMR
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~Received 3 March 1999!

The radial Fourier transform for the isotropic space with a fractal dimension is discussed. The moments of
diffusive displacements with non-Gaussian propagators arising as solutions of fractional diffusion equations
are calculated. The Fourier propagator is applied to NMR correlation and spectral density functions in context
with the orientational structure factor formalism. It is shown that the low-frequency molecular fluctuations of
liquids in porous media with strong or forced adsorption at surfaces are due to reorientations mediated by
translational displacements caused by surface diffusion of the adsorbate molecules. In terms of this formalism,
field-cycling NMR experiments provide information on the static and dynamic fractal dimensions related to
surface diffusion. The experimental results for liquids in porous silica glass can be explained by a surface
fractal dimensiondf52.5, where the mean squared displacement scales as^r 2(t)&}t2/dw with dw51 ~ballistic
transport!, if the surface population can exchange with the bulklike phase in the pores, and withdw52, if the
bulklike phase is frozen. The former dynamics is interpreted in terms of bulk-mediated surface diffusion.
@S1063-651X~99!08807-8#

PACS number~s!: 05.40.2a, 61.43.Hv, 68.35.Ct, 68.35.Fx
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I. INTRODUCTION

The anomalous transport in disordered media can be
cussed either in terms of a random walk~or statistical! ap-
proach or on the basis of a fractional diffusion equat
~FDE!. Fractional or enhanced diffusion is characterized
the mean squared displacement law

^r 2~ t !&}t2/dw, ~1!

where the dynamic parameterdw ~usually called the anoma
lous diffusion exponent! of the corresponding~anomalous!
random process deviates from Einstein’s classical resultdw
52. Non-Gaussian propagators arise as the solutions of f
tional diffusion equations, which are mostly discussed
dw.2 ~see Refs.@1–3#!. However, it can be shown@4–6#
that this type of equation can be solved for the superdiffus
regime 1<dw,2 as well.

With respect to the exponentdw , anomalous diffusion
can be classified@5,6# as follows.

~i! dw52 corresponds to the classical Brownian moti
described by a Gaussian propagator. From the statis
point of view, this random process is characterized by fix
step length and waiting time@1#.

~ii ! dw.2 corresponds to the dispersive diffusion regim
described by a non-Gaussian displacement probability d
sity. In the frame of the continuous time random wa
~CTRW! model, processes of this kind are due to tempo
disorder, characterized by power-law distributions of t
waiting times@1#.

~iii ! 1,dw,2 defines the intermediate region of supe
diffusion. Enhanced transport of this sort results from lon
tailed step-length and waiting-time distributions~i.e., spatial
or/and temporal disorder of the random process!.
PRE 601063-651X/99/60~2!/1292~7!/$15.00
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~iv! dw51 indicates ballistic transport. In this case, t
fractional diffusion equation adopts the form of a wave eq
tion.

In the present study, the reciprocal-space solutions
displacement distributions are employed in the frame of
orientational structure factor formalism@7,8# in order to cal-
culate the NMR correlation and intensity functions and t
frequency dependence of the spin-lattice relaxation rate
molecular dynamics dominated by reorientation mediated
translational displacements~RMTD! along surfaces@9#. The
static and dynamic fractal dimensions,df and dw , respec-
tively, which are related to diffusion of strongly adsorbe
molecules along fractal surfaces of porous glass, are ev
ated. The experimental data provide evidence for superdi
sive surface displacements withdw51 if the surfacelike and
bulklike phase are in fast exchange. This result is consis
with the model of bulk-mediated surface diffusion develop
by Bychuk and O’Shaughnessy@10#. That is, on the time
scale of the so-called retention time, surface diffusion ta
place in the form of Le´vy walks.

II. ANOMALOUS DIFFUSION: A FRACTIONAL
CALCULUS APPROACH

Fick’s second diffusion law reads

]

]t
P~r ,t !5l¹2P~r ,t !, ~2!

wherel is equal to the diffusion coefficient, and“ is the
nabla operator.P(r ,t) is the probability density of diffusive
displacementsr in a timet ~the propagator!. The well-known
solution of Eq.~2! is the Gaussian probability density.

Anomalous diffusion processes on fractal structures
be treated using the fractional diffusion equation@4,6#. The
integral representation of the FDE reads
1292 © 1999 The American Physical Society
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P~r ,t !2P~r ,0!5E
0

t

L~ t2t8!¹2P~r ,t8!dt8. ~3!

The memory kernelL(t2t8) reflects temporal disorder of a
anomalous transport process. AssumingL(t2t8)5l (t
2t8)b21/G(b), one gets@4,6#

P~r ,t !2P~r ,0!5l 0Dt
2b¹2P~r ,t !, ~4!

where 0Dt
2b is the Riemann-Liouville integral operator@11#.

The units of the transport constantl are related to that of the
ordinary diffusion coefficientD0 : @l#5@D0 /tb21#. The
differential form of this equation can be expressed by
following time-fractional diffusion equation

]b

]tb
P~r ,t !2

]b

]tb
P~r ,0!5l¹2P~r ,t !. ~5!

Note that the important term (]b/]tb)P(r ,0)
5P(r ,0)t2b/G(12b), accounting for the initial-value con
dition P(r,0)5d(r), is often not mentioned explicitly in the
literature@3,5,12,13#. Actually, this term can be omitted onl
in the casebPN0 but is essential if the diffusion equatio
really has a fractional character. Obviously, forb51, we
have (]/]t)P(r ,0)50, and hence the conventional diffusio
equation, Eq. ~2!, is recovered. If b52, i.e.,
(]2/]t2)P(r ,0)50, Eq. ~5! takes the form of a wave equa
tion and describes the ballistic transport regime.

The geometry of the fractal structure and the dynamics
the corresponding random process are described by the s
fractal dimensiondf and by the dynamic fractal dimensio
dw ~i.e., the anomalous diffusion exponent!, respectively.
Note that“ in the FDE Eq.~5! represents the nabla operat
in D dimensions@3,5#. The order of the fractal time deriva
tive, b, is related todw by b52/dw and is independent of th
static parameterdf .
-
e

e

f
tic

Occasionally, the operator¹a is discussed in the literatur
@6,12# instead of¹2. The FDE is then certainly treatable i
one dimension, and leads to solutions in the form of Le´vy
distributions@6#. However, the interpretation of the fraction
spatial derivative in more dimensions remains uncle
whereas the use of the operator¹2 in Eqs. ~4! or ~5! is
motivated by the radial symmetry of the~fractal! space under
consideration: In the reciprocal space, Eqs.~4! or ~5! are
converted into

]

]t
p~k,t !52lk2

0Dt
12b@p~k,t !#. ~6!

The square of the wave number,k25uku2, is equal to the sum
of the d components ofk if the space in which the random
motion takes place is defined byd Euclidean dimensions. On
the other hand, if the random-walk space is of a fractal
mensionality, the number of thek components is defined b
the global dimensionD ~e.g.,D52 for a fractal surface,D
53 for a fractal volume!.

Schneider and Wyss@4# solved Eq.~5! after rescaling it so
thatl51. However, the parameterl is important for experi-
ments since it is related to the diffusion coefficientD0, and,
as a consequence, to the temperature dependence of th
fusion process.

The solution@4# of Eq. ~6! is given by the Mittag-Leffler
function

p~k,t !5Eb,1@~2ltbk2!#5(
j 50

`
~2ltbk2! j

G@11b j #
, ~7!

whereb52/dw can be found with the approach suggested
Metzler and Nonnenmacher@5#. The inverseD-dimensional
Fourier transformation~see Appendix! of the characteristic
function given in Eq.~7! leads to the real-space propagator
terms of Fox’sH function @14#,
P~r ,t !52212D p2D/2 t2D/dw l2D/23H1,2
2,0F r

2Alt1/dwU $% u HH 12
D

dw
,

1

dw
J J

HH 0,
1

2J , H 22D

2
,
1

2J J u $%
G . ~8!
Note that the space dimensionD does not enter in the ex
pression forp(k,t) @Eq. ~7!#, in contrast to the real-spac
propagator@Eq. ~8!#. Thus, in this model,p(k,t) exclusively
provides the dynamical information indicated bydw , regard-
less of the structure of ther space. ForD52, Eq.~8! repre-
sents our surface propagator.

The mth moment of the propagator at Eq.~8! reads~see
Appendix!

^r m~ t !&52m21Dlm/2
G@~21m!/2#G@~m1D !/2#

G@~21D !/2#G@11m/dw#
tm/dw

~9!

so that the second moment takes the form
^r 2~ t !&5
2Dl

G@112/dw#
t2/dw. ~10!

In the limit lt2/dwk2!1, the propagator given in Eq.~7!
approaches

p~k,t !5expS 2
lt2/dwk2

G@112/dw# D . ~11!

With this expression, one finds
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^r m~ t !&52m21Dlm/2
G@~m1D !/2#

G@~21D !/2#

tm/dw

G@112/dw!] m/2
,

~12!

in general, and

^r 2~ t !&5
2Dl

G@112/dw#
t2/dw ~13!

for the second moment. Comparing Eqs.~10! and ~13!, one
realizes that the asymptotic form of the Mittag-Leffler prop
gator given in Eq.~11! can be used to calculate the me
squared displacement instead of the exact solution at Eq.~7!.
This finding is of relevance for practical applications sin
the asymptotic form ofp(k,t) is more obvious than the exac
Mittag-Leffler representation of the propagator.

In Ref. @6#, an alternative approach to superdiffusion w
considered for the fractional diffusion equation in one
mension. In that case, thek-space solution turns out to b
equal to the characteristic Kohlrausch-Williams-Watts fun
tion,

p~k,t !5exp~2atukua!, 0,a,2 ~14!

where (a.0, t.0). By means ofp(k,t) given in Eq.~14!,
Lévy distributionsp̃(r ,t) in the real space can be generat
with the aid of the inverse Fourier transform@6#. For larger,
one obtainsp̃(r ,t)}t/r a11 as the limiting form of the Le´vy
a-stable process in a one-dimensional space.

III. THE RMTD RELAXATION MECHANISM
AND THE ORIENTATIONAL

STRUCTURE FACTOR

Proton spin-lattice relaxation in liquids is predominan
due to fluctuations of the intramolecular dipole-dipole int
action among the spin-bearing nuclei. That is, molecular
namics reorients the molecules so that dipolar coupling
modulated. In context with adsorbate diffusion along rou
surfaces, fluctuations slow compared with bulk correlat
times are governed by reorientations mediated by tran
tional displacements along rough and curved surfaces@8,15–
18#.

Molecular fluctuations are described by the autocorre
tion function G(t), and, in the frequency domain, by th
intensity functionI(v). The latter is defined as the cosin
Fourier tranform ofG(t),

I~v!52E
0

`

G~ t !cos~vt !dt. ~15!

The spin-lattice relaxation rate is given by

1

T1
5S m0

4p D 2 3

2
g4\2I ~ I 11!^uF (1)u2&@I~v!14I~2v!#.

~16!

A technique suitable to record the frequency depende
of this function over several orders of magnitude is fie
-
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cycling NMR relaxometry@9#. The information probed in
this way refers to the autocorrelation function via the inte
sity function.

The correlation functionG(t) virtually reflects the corre-
lation of molecular orientations at the momentst8 and t8
1t. Molecular reorientations in bulk liquids are a cons
quence of rotational diffusion. If the molecule is adsorbed
a surface, this rotational diffusion is hindered and incompl
with respect to the solid angle range covered. That is,
sidual orientational correlations persist on a time scale m
longer than that of ordinary rotational diffusion. The mech
nism coming at longer times into play is ‘‘reorientation m
diated by translational displacements’’ along rough surfac
The formalism is described in more detail in Ref
@7–9,15,16,18#. Thus, on a correspondingly long time sca
nuclear spin-lattice relaxation is dominated by surface dif
sion.

Displacements of the adsorbed molecule along the sur
are characterized by the propagatorP(s,t) on the one hand,
and the orientational correlation at sites separated by the
tances on the other. The latter is described by the surfa
orientation correlation functiong(s) which can be expresse
in terms of second-order spherical harmonicsY2,21(V),

g~s!54p^Y2,21~V0!Y2,11~Vs!&s0V0Vs

5
4p

A E d2s0 E dV0E dVs Y2,21~V0!

3Y2,11~Vs!F~V0 ,Vs,s!. ~17!

The quantityA is the surface area accessible by surfa
diffusion on a time scale of the orderT1. The vectorsV0 and
Vs denote the surface orientations at the initial and fi
positions on the surface,s0 ands01s, respectively. The func-
tion F(V0 ,Vs,s)dV0 dVs is the conditional probability
that the surface orientation at the positions is within Vs and
Vs1dVs if the surface orientation at the positions0 is
within V0 and V01dV0. ExpressingF(V0 ,Vs ,s) by the
product ofd functions averaged over all possible initial p
sitions,F„V0 ,Vs ,s…5^d„V(s0)2V0…d„V(s01s)2Vs…&s0,
leads to

g~s!54p^Y2,21„V~s0!…Y2,11„V~s01s!…&s0
. ~18!

Random surfaces may be discussed by considering a
dimensional surface profile@18#. Furthermore, it can be
shown that the surface correlation function given above
terms of second-order spherical harmonics essentially de
the same way as the correlation function of the normal v
tors,g(x)'^n(x0)•n(x01x)&x0

. On the basis of fractal scal

ing relations, the proportionalityg(x)}xH21 can be ob-
tained, whereH is the roughness exponent of the surfa
profile related to the surface fractal dimension byH53
2df .

On these grounds and assuming radial symmetry, we s
gest that for fractal surfaces characterized by the fractal
mensiondf , the surface correlation function scales as

g~s!}s22df , ~19!
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where s is the curvilinear displacement within the two
dimensional~2D! space of the second-order base plane re
tive to which the surface roughness is considered. Equa
~19! is valid in the scale-invariance rangej0,s,j1, where
j0 is of the order of the molecular diameter, andj1 is of the
order of the mean pore size.

For the analysis in the following, we recall thatg(s) re-
flects the geometry of the surface, whereasP(s,t) accounts
for the dynamics on the surface. That is, we have to seD
52 in Eq. ~8!. The same applies to the correlation functi
G(t), which is calculated in the base-plane space of the
mensionD52. In the isotropic case,G(t) can be expresse
by @8#

G~ t !5E
0

`

g~s!P~s,t !2psds. ~20!

This is the real-space variant. In the reciprocal space,
correlation function reads

G~ t !5
1

~2p!2E0

`

S~k!p~k,t !dk, ~21!

where the orientational structure factorS(k) is introduced as
a counterpart to the surface correlation functiong(s). The
two functions are related by the spatial Hankel transform

S~k!5~2p!2kE
0

`

sg~s!J0~ks!ds, ~22!

with J0(ks) the Bessel function of zeroth order. The Hank
transform is a special case of the radial Fourier transform
an isotropic space with two dimensions~see, also, Appen
dix!.

Actually, S(k) in the RMTD model is analogous to th
static structure factor used in scattering theories. The o
difference is that the orientational structure factor in cont
of NMR reflects orientational rather than material dens
correlations@18#. For fractal surfaces,S(k) is a power law
S(k)}kdf23, leading to power-law decays ofG(t) andI(v).

Equation~21! stipulates the availability ofp(k,t) in the
whole wave number range. However, the orientational str
ture factor is a power law only in the scale-invariance ran
of the surface. Therefore, the decays of the correlation
intensity functions calculated below apply in correspon
ingly limited time and frequency ranges, respectively. T
should be kept in mind when contemplating the example
the following.

The correlation functionG(t) can be calculated for the
RMTD mechanism with the help of Eq.~20! using the exact
representation of a real-space propagator Eq.~8!. Alternately,
the calculation can be performed in thek space@Eq. ~21!#
using the asymptotick-space distribution given by Eq.~11!.
Thus, in terms of the fractional-time diffusion equation a
proach, one finds

G~ t !} t2(df22)/dw, ~23!

provided that the displacements along the surface corresp
to the scale-invariance length scale of the surface.
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On the other hand, in context with Le´vy walks and a
fractal-space diffusion equation, one gets

G~ t !} t2(df22)/a. ~24!

This suggests thata has the character of a fractal dimensio
as already pointed out by Klafteret al. @1# for the same
parameter in Eq.~14!. ComparingG(t) calculated in terms
of the time-fractal and space-fractal FDE, Eqs.~23! and~24!,
respectively, indicates indeed that the exponenta in Eq. ~14!
corresponds todw in the context of the fractional diffusion
theory. This conclusion thus elucidates the nature of a v
fundamental parameter.

The counterpart of the correlation functionG(t) is the
intensity function. In the present context, it reads

I~v!}v2(21dw2df )/dw ~25!

according to Eq.~15!.
In the case of normal two-dimensional diffusion, i.e.,dw

5a52, the RMTD correlation and intensity functions sca
as

G~ t !} t2(df22)/2 ~df.2! ~26!

and

I~v!} v2(42df )/2 ~2<df<3!, ~27!

respectively. Normal 2D diffusion is expected, for examp
in the thin interfacial liquid layer arising between the matr
and the frozen bulklike adsorbate at temperatures below
freezing point. In that case, bulk-mediated surface diffus
is prevented, and we are dealing with ordinary diffusion in
two-dimensional system.

On the other hand, at temperatures above the free
point and under strong-adsorption conditions, the adsorb
molecules perform random walks along the surface as a c
sequence of intermittent excursions into the bulklike pha
Surface diffusion on this basis was shown to be anomal
within the so-called retention time~see Refs.@10,19#!. The
character of surface diffusion then turns out to be of
ballistic type, i.e.,dw51. This sort of random displacemen
is also known as Le´vy walk. The corresponding RMTD
functions are

G~ t !}t2(df22) ~2,df<3! ~28!

and

I~v!}v2(32df ) ~2<df,3!. ~29!

IV. COMPARISON WITH EXPERIMENTAL DATA
AND DISCUSSION

The RMTD low-frequency spin-lattice relaxation mech
nism links dynamic properties of adsorbate molecules w
the structural details of the adsorbent surface, character
by the dynamic fractal parameterdw of the random process
and, for fractal surfaces, by the static fractal dimensiondf of
the surface, respectively. According to Eq.~25!, these param-
eters can be evaluated from the power-law low-frequencyT1
dispersion curves, which were observed for polar liquids
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porous glasses@16#, for instance.
A clear example for a power-law frequency depende

of the spin-lattice relaxation timeT1 is shown in Fig. 1. It
refers to the system dimethylsulfoxide~DMSO! filled into
porous silica glass with a mean pore dimension of 10 n
Experimental details can be found in Ref.@8#. Figure 1 also
shows the protonT1 dispersion measured in the adsorba
diluted by its deuterated form so that any intermolecular
polar interactions are reduced. The coincidence of the
data sets proves that the spin interactions dominating
low-frequency spin-lattice relaxation in DMSO are of an i
tramolecular nature.

Two different temperatures have been examined. At 2
K the bulklike adsorbate in the pores is frozen and does
perceptibly contribute to the spin-lattice relaxation rate. T
observedT1 dispersion is rather caused by the nonfreez
interfacial liquid existing in the form of a one to two mo
lecular diameter thick nonfreezing surface layer. In suc
situation, one expects that diffusion along the surface is n
mal, that is,dw52.

On the other hand, at 291 K when all adsorbate molecu
are in the liquid state, the bulklike adsorbate phase cont
utes, and the ‘‘bulk-mediated surface diffusion’’ mechanis
can occur@10#. As already outlined above, the consequen
is that in the strong-adsorption limit~which is pertinent here!
and for surface displacements short relative to diffusion
the bulk the dynamic parameterdw51 applies for the propa
gation of adsorbate molecules along the surface.

At both temperatures a power-law behavior is obser
over three to four decades of the frequencyn5v0 /2p (v0
is the Larmor frequency!. The results are

FIG. 1. Frequency dependence of the proton spin-lattice re
ation time of dimethylsulfoxide~DMSO! in porous glass B10 abov
and below the freezing temperature of the bulklike liquid. Data
an isotopically diluted sample~80% DMSO-d6) are also shown.
The relaxation times of the partially frozen sample at 270 K refe
the slowly decaying component of the NMR signal correspond
to the nonfreezing surface layers.
e
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T1}n0.7360.04 for T5270 K, dw52 ~30!

and

T1}n0.5460.04 for T5291 K, dw51. ~31!

Note that similarT1 dispersion slopes have also been o
served@16# with several other polar organic liquids in a po
rous glass with 30 nm pores. This indicates that the surf
structure acts on all adsorbate liquids the same way.

As another example, Fig. 2 shows malononitrile in t
same nanoporous glass at 275 K~8 K below the melting
region of the bulklike liquid in the pores! and at 291 K~18 K
above the freezing point!, respectively. The power-law fre
quency dispersions of the spin-lattice relaxation time
evaluated as

T1}n0.7460.04 for T5275 K, dw52 ~32!

and

T1}n0.4960.04 for T5291 K, dw51. ~33!

Interpreting these power laws according to Eq.~25! and the
propagator Eq.~8! suggests a common orientational structu
factor of this particular porous glass independent of the
sorbate species. The result is

S~k!}k20.560.04. ~34!

The surface fractal dimension to be inferred from this is

df52.560.04. ~35!

x-

r

o
g

FIG. 2. Frequency dependence of the proton spin-lattice re
ation time of malononitrile in porous glass B10 above and bel
the freezing temperature of the bulklike liquid. The relaxation tim
of the partially frozen sample at 275 K refer to the slowly decay
component of the NMR signal corresponding to the nonfreez
surface layers.
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This value very favorably fits to the range of typical liter
ture data evaluated for controlled porous glass on the bas
x-ray and neutron scattering experiments@20#.

In this work, we have described fractional dynamics
fractal spaces in a comprehensive way. The two source
anomalous scaling laws are clearly distinguished in the
malism presented. It was shown that fractional scaling la
in space and time can be identified experimentally us
field-cycling NMR relaxometry. Furthermore, it was eluc
dated that the physical meaning of the exponentsa @see Eq.
~14!# and dw @see Eq.~1!# coincides so that the formalism
can consistently be expressed in a closed form.
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APPENDIX: THE FOURIER TRANSFORM
IN THE FRACTAL SPACE

WITH RADIAL SYMMETRY

The radial part of the Fourier transform in the isotropic
D-dimensional fractal space reads

p~k,t !5E P~r ,t !e2 ikr cosudDr , ~A1!

wherer 5uru, k5uku, and the angleu is spanned byr andk.
Furthermore,

dDr 5dVDr D21dr, ~A2!

E
V

dVD5
2pD/2

G~D/2!
. ~A3!

This result can be obtained for radial symmetry with t
ansatz

dVD5
2p (D21)/2

G@~D21!/2#
~sinu!D22du, D.1 ~A4!

for uP@0,p#. Experimentally, only the range 1,D<3 is
relevant, so that we can restrict ourselves to this case.
fractal space with the non-Euclidean~fractal! dimensionD
has a global dimensionn, defined by the number of the in
dependent variables describing the behavior of self-af
functions in the space under consideration. For instancn
B

A

of

of
r-
s
g

f

-

l

he

e

52 for a rough surface with the surface fractal dimens
1,D<3, andn53 for a fractal pore space with the~vol-
ume! fractal dimension 2,D<3. The number of angle vari
ables depends on the global dimensionn. In two global di-
mensions~on the fractal surface!, only one angle variable is
necessary. In three dimensions~in the fractal volume!, polar
and azimuthal angles (u andw, respectively! are needed. In
the latter case,*0

2pdw52p as a consequence of the radi
symmetry assumed above. One can choose the coord
system so that the angleu betweenr and k in Eq. ~A1!
coincides with the polar angle of the system. Hence, ifu
P@0,p#, the volume elements forD52 and 3 read

d2r 5rdrdV252rdrdu,
~A5!

d3r 5r 2drdV352pr 2dr sinudu.

Note that according to the integral representation of
Bessel function@21#,

E
0

p

e6 ikr cosu~sinu!D22du52D/221p1/2GS D21

2 D
3~kr !12D/2JD/221~kr !, ~A6!

the radial part of the Fourier transform in the statistica
isotropic fractal space takes the form

p~k,t !5~2p!D/2k12D/2E
0

`

r D/2JD/221~kr !P~r ,t !dr.

~A7!

Schneider and Wyss@4# pointed out that the radial Fourie
transform of this type applies toD5nP$1,2,3%. As shown
above, Eq.~A7! is valid for any space with the static fracta
dimensionDPR, D.1. Note that the Fourier transform
given in Eq.~A7! is self-inverse. The real-space propaga
P(r ,t) can be calculated fromp(k,t) as the inverse Fourie
transform

P~r ,t !5~2p!2D/2r 12D/2E
0

`

kD/2JD/221~kr !p~k,t !dk.

~A8!

Using Eqs.~A2! and ~A4!, themth moment ofr is found to
be

^r m~ t !&5
2pD/2

G@D/2#
E

0

`

r D21r mP~r ,t !dr. ~A9!

Equation~9! is reproduced by inserting the propagator E
~8! in Eq. ~A9!.
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